177 research outputs found

    ePhysio: A Wearables-Enabled Platform for the Remote Management of Musculoskeletal Diseases

    Get PDF
    Technology advancements in wireless communication and embedded computing are fostering their evolution from standalone elements to smart objects seamlessly integrated in the broader context of the Internet of Things. In this context, wearable sensors represent the building block for new cyber-physical social systems, which aim at improving the well-being of people by monitoring and measuring their activities and provide an immediate feedback to the users. In this paper, we introduce ePhysio, a large-scale and flexible platform for sensor-assisted physiotherapy and remote management of musculoskeletal diseases. The system leverages networking and computing tools to provide real-time and ubiquitous monitoring of patients. We propose three use cases which differ in scale and context and are characterized by different human interactions: single-user therapy, indoor group therapy, and on-field therapy. For each use case, we identify the social interactions, e.g., between the patient and the physician and between different users and the performance requirements in terms of monitoring frequency, communication, and computation. We then propose three related deployments, highlighting the technologies that can be applied in a real system. Finally, we describe a proof-of-concept implementation, which demonstrates the feasibility of the proposed solution

    Wearable Augmented Reality Application for Shoulder Rehabilitation

    Get PDF
    Augmented reality (AR) technology is gaining popularity and scholarly interest in the rehabilitation sector because of the possibility to generate controlled, user-specific environmental and perceptual stimuli which motivate the patient, while still preserving the possibility to interact with the real environment and other subjects, including the rehabilitation specialist. The paper presents the first wearable AR application for shoulder rehabilitation, based on Microsoft HoloLens, with real-time markerless tracking of the user’s hand. Potentialities and current limits of commercial head-mounted displays (HMDs) are described for the target medical field, and details of the proposed application are reported. A serious game was designed starting from the analysis of a traditional rehabilitation exercise, taking into account HoloLens specifications to maximize user comfort during the AR rehabilitation session. The AR application implemented consistently meets the recommended target frame rate for immersive applications with HoloLens device: 60 fps. Moreover, the ergonomics and the motivational value of the proposed application were positively evaluated by a group of five rehabilitation specialists and 20 healthy subjects. Even if a larger study, including real patients, is necessary for a clinical validation of the proposed application, the results obtained encourage further investigations and the integration of additional technical features for the proposed AR application

    Drug-induced hypertension: Know the problem to know how to deal with it

    Get PDF
    Arterial hypertension remains the world's leading mortality risk factor and despite overwhelming evidence that blood pressure-lowering strategies greatly reduce the cardiovascular risk, a substantial proportion of hypertensive individuals worldwide fail to achieve an optimal blood pressure control under treatment. Among the causes responsible for the gap existing between blood pressure lowering potential of the different antihypertensive treatments and real-life practice is the presence of drug-induced hypertension. Many therapeutic agents or substances may directly favour an increment of blood pressure values or counteract the blood pressure lowering effects of antihypertensive drugs. Excessive water and sodium retention, direct vasoconstriction or sympathomimetic activation are major mechanisms of action of such substances. The present manuscript will review medications and other substances that may increase blood pressure, also suggesting the choice of the more appropriate antihypertensive agents to employ when withdrawal of the substance or drug causing an elevation of blood pressure values is not possible

    Bilateral dimorphism of Loewenthal's gland in young male albino rats: an ultrastructural investigation

    Get PDF
    This study represents a further contribution to our knowledge about the structure of Loewenthal's gland. There are several divergences in the available literature on the topic, concerning both the histological and ultrastructural findings. However, in these studies, the authors did not take into account the potential influence of a putative side-dependent dimorphism previously reported by us. We therefore carried out histological and electronmicroscopic observations specifically aimed at evaluating the importance of the gland shape for its structure. In particular, in male albino rats aged 70-120 days, we compared the structure of the left and right glands. Depending on the side undergoing morphological investigation, we observed differences in the acini, cells, nuclei, endoplasmic reticulum, Golgi apparatus and granular content. Apart from slight individual differences, we found that structural variations were most frequently observed in glands displaying a more evident macroscopic side-specific dimorphism. Our findings demonstrate that several conflicting data in the literature dealing with the structure of Loewenthal's glands might be explained by the morphofunctional side-dependent dimorphism of the organ

    SKIN, INFLAMMATION AND SULFUROUS WATERS: WHAT IS KNOWN, WHAT IS BELIEVED

    Get PDF
    One could argue that balneotherapy and mud therapy would have not lasted 2,000 years or so If they were not effective. No doubt a long history cannot be taken per se as scientific proof of efficacy. Some empiricism is still present in the field: the concept of spa itself is quite confounding, whereas spring waters are used for leisure purposes but also for non-acute patient therapy and late phases of clinical recovery. These confounding elements ultimately feed the opinion of those who aprioristically reject any potential beneficial effect of balneotherapy: instead, it should at least generate questions that deserve scientific answers. Clinical practices sequentially integrating pharmacological therapy with those natural principles for which a sufficient scientific demonstration is available, would probably cut the costs of public health, generating widespread advantages for the community. Recently, it has become evident that mineral waters may have intrinsic pharmacological properties. Of the numerous salts dissolved in thermal waters that might show pharmacological properties, for certain hydrogen sulfide (H2S) contained in sulfurous waters is the one that has obtained greater scientific attention, to which should be added the extensive scientific effort recently dedicated to H2S as a cellular gasotransmitter, independently from its natural sources. Dermatology and cosmetics are among the most studied applications of sulfurous waters, around which, however, some empiricism still confounds opinions: we therefore considered that a state-of-the-art focus on this topic might be timely and useful for future studies

    Review of the Augmented Reality Systems for Shoulder Rehabilitation

    Get PDF
    Literature shows an increasing interest for the development of augmented reality (AR) applications in several fields, including rehabilitation. Current studies show the need for new rehabilitation tools for upper extremity, since traditional interventions are less effective than in other body regions. This review aims at: Studying to what extent AR applications are used in shoulder rehabilitation, examining wearable/non-wearable technologies employed, and investigating the evidence supporting AR effectiveness. Nine AR systems were identified and analyzed in terms of: Tracking methods, visualization technologies, integrated feedback, rehabilitation setting, and clinical evaluation. Our findings show that all these systems utilize vision-based registration, mainly with wearable marker-based tracking, and spatial displays. No system uses head-mounted displays, and only one system (11%) integrates a wearable interface (for tactile feedback). Three systems (33%) provide only visual feedback; 66% present visual-audio feedback, and only 33% of these provide visual-audio feedback, 22% visual-audio with biofeedback, and 11% visual-audio with haptic feedback. Moreover, several systems (44%) are designed primarily for home settings. Three systems (33%) have been successfully evaluated in clinical trials with more than 10 patients, showing advantages over traditional rehabilitation methods. Further clinical studies are needed to generalize the obtained findings, supporting the effectiveness of the AR applications

    DNA damage associated with ultrastructural alterations in rat myocardium after loud noise exposure.

    Get PDF
    Noise exposure causes changes at different levels in human organs, particularly the cardiovascular system, where it is responsible for increasing heart rate, peripheral vascular resistance, and blood pressure. In this study, we evaluated the effect of noise exposure on DNA integrity and ultrastructure of rat cardiomyocytes. The exposure to loud noise (100 dBA) for 12 hr caused a significant increase of DNA damage, accompanied by swelling of mitochondrial membranes, dilution of the matrix, and cristolysis. These alterations were concomitant with increased in situ noradrenaline levels and utilization. Genetic and ultrastructural alterations did not decrease 24 hr after the cessation of the stimulus. An elevated oxyradical generation, possibly related to altered sympathetic innervation, is hypothesized as responsible for the induction and persistence of noise-induced cellular damage

    Role of IGF1 and IGF1/VEGF on Human Mesenchymal Stromal Cells in Bone Healing: Two Sources and Two Fates.

    Get PDF
    In the repair of skeletal defects one of the major obstacles still remains an efficient vascularization of engineered scaffolds. We have examined the ability of insulin growth factor-1, alone or in association with vascular endothelial growth factor, to modulate the osteoblastic or endothelial commitment of periosteum-derived progenitor cells (PDPCs) and skin-derived multipotent stromal cells (S-MSCs). A selected gene panel for endothelial and osteoblastic differentiation as well as genes that can affect MAPK and PI3K/AKT signaling pathways were investigated. Moreover, gene expression profile of Sox2, Oct4, and Nanog transcription factors was assessed. Our results showed that under growth factor stimulation PDPCs are induced toward an osteoblastic differentiation, while S-MSCs seem to move along an endothelial phenotype. This different commitment seems to be linked to a diverse MAPK or PI3K/AKT signaling pathway activation. The analysis of genes for stemness evidenced that at least in PDPCs multipotency and differentiation could coexist. These results open interesting perspective for the development of innovative bone tissue engineering approaches based on a good network of angiogenesis and osteogenesis processes

    How to Build a Patient-Specific Hybrid Simulator for Orthopaedic Open Surgery: Benefits and Limits of Mixed-Reality Using the Microsoft HoloLens

    Get PDF
    Orthopaedic simulators are popular in innovative surgical training programs, where trainees gain procedural experience in a safe and controlled environment. Recent studies suggest that an ideal simulator should combine haptic, visual, and audio technology to create an immersive training environment. This article explores the potentialities of mixed-reality using the HoloLens to develop a hybrid training system for orthopaedic open surgery. Hip arthroplasty, one of the most common orthopaedic procedures, was chosen as a benchmark to evaluate the proposed system. Patient-specific anatomical 3D models were extracted from a patient computed tomography to implement the virtual content and to fabricate the physical components of the simulator. Rapid prototyping was used to create synthetic bones. The Vuforia SDK was utilized to register virtual and physical contents. The Unity3D game engine was employed to develop the software allowing interactions with the virtual content using head movements, gestures, and voice commands. Quantitative tests were performed to estimate the accuracy of the system by evaluating the perceived position of augmented reality targets. Mean and maximum errors matched the requirements of the target application. Qualitative tests were carried out to evaluate workload and usability of the HoloLens for our orthopaedic simulator, considering visual and audio perception and interaction and ergonomics issues. The perceived overall workload was low, and the self-assessed performance was considered satisfactory. Visual and audio perception and gesture and voice interactions obtained a positive feedback. Postural discomfort and visual fatigue obtained a nonnegative evaluation for a simulation session of 40 minutes. These results encourage using mixed-reality to implement a hybrid simulator for orthopaedic open surgery. An optimal design of the simulation tasks and equipment setup is required to minimize the user discomfort. Future works will include Face Validity, Content Validity, and Construct Validity to complete the assessment of the hip arthroplasty simulator
    • …
    corecore